
 MODULE SPECIFICATION PROFORMA

How t

Module Code: COM737

Module Title: Developing Secure Software

Level: 7

Credit Value:

20

Cost
Centre(s): GACP JACS3 code:

HECoS code:
I300
100374

Faculty: Arts, Science and
Technology

Module
Leader: Nigel Houlden

Scheduled learning and teaching hours 21 hrs
Guided independent study 179 hrs

Placement 0 hrs

Module duration (total hours) 200 hrs

Programme(s) in which to be offered (not including exit awards) Core Option

MSc Cyber Security  ☐

Pre-requisites
None

Office use only
Initial approval: 28/11/2018 Version no:1
With effect from: 01/09/2019
Date and details of revision: Version no:

https://www.hesa.ac.uk/support/documentation/jacs/jacs3-detailed
https://www.hesa.ac.uk/innovation/hecos

Module Aims

The module will allow students to understanding and apply the theory and practice of
exploiting vulnerabilities in software as well as key skills of design and implementation of
secure software. Students will learn the ability to implement secure systems and
environments to support software security. Additionally, they will explore the use of secure
programming languages and the effects on secure software. The use obfuscation and
encryption in the protection of software will also be investigated.

Intended Learning Outcomes

Key skills for employability

KS1 Written, oral and media communication skills
KS2 Leadership, team working and networking skills
KS3 Opportunity, creativity and problem solving skills
KS4 Information technology skills and digital literacy
KS5 Information management skills
KS6 Research skills
KS7 Intercultural and sustainability skills
KS8 Career management skills
KS9 Learning to learn (managing personal and professional development, self-
 management)
KS10 Numeracy

At the end of this module, students will be able to Key Skills

1 Research, comparing contrast various approaches to
software and/or system security

KS1
KS5
KS6

2 Demonstrate secure programming techniques
KS2
KS3
KS10

3 Demonstrate an understanding of weaknesses in software
and/or systems

KS3
KS5
KS1

4 Express an understanding of approaches, methods and
techniques to secure software

KS3
KS6

5 Demonstrate an understanding of obfuscation, encryption and
signing in software and system security

KS3
KS6

Transferable skills and other attributes

Derogations

None

Assessment:

Indicative Assessment Tasks:

Assessment 1 will comprise of a portfolio of weekly practical exercises carried out over a
minimum of six weeks. The exercises will be based on various aspects of module content
such as development of secure programs, exploitation and mitigation of vulnerabilities. Each
week will be submitted within allocated time for that week’s activity such that continuous
feedback can be provided for improvement.

Assessment 2 will be an in-class test hosted on the virtual learning environment which will
test students on their understanding and knowledge of the module content.

Assessment
number

Learning
Outcomes to
be met

Type of assessment Weighting
(%)

Duration
(if exam)

Word count
(or equivalent if
appropriate)

1 1-5 Portfolio 70 4000
2 3,4 In-class test 30 1.5 hours

Learning and Teaching Strategies:

Students will develop understanding and practical skills based on weekly lectures, task-
orientated tutorials and supervised workshops. The teaching sessions will utilise
examples/case studies as a platform for understanding software security principles.

Appropriate blended learning approaches and technologies, such as, the University’s VLE
and computer security tools, will be used to facilitate and support student learning, in
particular, to:

• deliver content;
• encourage active learning;
• provide formative and summative assessments, and prompt feedback;
• enhance student engagement and learning experience.

Syllabus outline:
Memory models.
Programming bugs and mistakes that lead to vulnerabilities.
Secure programming languages and frameworks.
Attacks against software.
Other software related attacks: e.g. XSS attacks, SQL injection, etc.
programming for security.
Software and system protection methods.
‘Secure by design’ development.

Indicative Bibliography:

Essential reading

Howard, M., LeBlanc, D. and Viega, J. (2009), 24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them. New York: McGraw-Hill.

Other indicative reading

Azad, S. and Pahtan, A.S.K. (2014), Practical Cryptography: Algorithms and Implementations
Using C++. Boca Raton, FL: Taylor & Francis.

Cachin, C., Geurraoui, R. and Rodrigues, L. (2011), Introduction to Reliable and Secure
Distributed Programming. Springer.

Coffin, D. (2011), Expert Oracle and Java Security: Programming Secure Oracle Database
Applications with Java. Apress.

Johnson, T.A. (2015), Cybersecurity: Protecting Critical Infrastructures from Cyber-attack and
Cyber Warfare. CRC Press.

Manico, J. and Detlefsen, A. (2014), Iron-clad Java: Building Secure Web Applications. New
York: McGraw Hill Education.

O’Connor, T.J. (2012), Violent Python: A Cookbook for Hackers, Forensic Analysists,
Penetration Testers and Security Engineers. Syngess.

Seacord, R.C. (2013), Secure Coding in C and C++. Upper Saddle River, NJ: Addison-
Wesley.

Shalloway, A., Bain, S., Pugh, K. and Kolsky, A. (2011), Essentials Skills for the Agile
Developer: A Guide to Better Programming and Design. Boston: Addison-Wesley.

Wu, H.and Zhao, L. (2017), Web Security: A Whitehat Perspective. Boca Raton, FL:
Auerbach Publications.

Appropriate web-based sources will be used to supplement the reading list.

	How t

